Multilevel First-Order System Least Squares for Elliptic Grid Generation
نویسندگان
چکیده
A new fully-variational approach is studied for elliptic grid generation (EGG). It is based on a general algorithm developed in a companion paper [10] that involves using Newton’s method to linearize an appropriate equivalent first-order system, first-order system least squares (FOSLS) to formulate and discretize the Newton step, and algebraic multigrid (AMG) to solve the resulting matrix equation. The approach is coupled with nested iteration to provide an accurate initial guess for finer levels using coarse-level computation. The present paper verifies the assumptions of [10] and confirms the overall efficiency of the scheme with numerical experiments.
منابع مشابه
Multilevel First-Order System Least Squares for Nonlinear Elliptic Partial Differential Equations
A fully variational approach is developed for solving nonlinear elliptic equations that enables accurate discretization and fast solution methods. The equations are converted to a first-order system that is then linearized via Newton’s method. First-order system least squares (FOSLS) is used to formulate and discretize the Newton step, and the resulting matrix equation is solved using algebraic...
متن کاملProjection Multilevel Methods for Quasilinear Elliptic Partial Differential Equations: Numerical Results
The goal of this paper is to introduce a new multilevel solver for two-dimensional elliptic systems of nonlinear partial differential equations (PDEs), where the nonlinearity is of the type u∂v. The incompressible Navier-Stokes equations are an important representative of this class and are the target of this study. Using a first-order system least-squares (FOSLS) approach and introducing a new...
متن کاملProjection Multilevel Methods for Quasilinear Elliptic Partial Differential Equations: Theoretical Results
In a companion paper [8], we propose a new multilevel solver for two-dimensional elliptic systems of partial differential equations (PDEs) with nonlinearity of type u∂v. The approach is based on a multilevel projection method (PML [9]) applied to a first-order system least-squares (FOSLS) functional that allows us to treat the nonlinearity directly. While [8] focuses on computation, here we con...
متن کاملAnalysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part I
First-order system least squares (FOSLS) is a recently developed methodology for solving partial differential equations. Among its advantages are that the finite element spaces are not restricted by the inf-sup condition imposed, for example, on mixed methods and that the least-squares functional itself serves as an appropriate error measure. This paper studies the FOSLS approach for scalar sec...
متن کاملMultilevel Boundary Functionals for Least-squares Mixed Finite Element Methods
For least-squares mixed nite element methods for the rst-order system formulation of second-order elliptic problems, a technique for the weak enforcement of boundary conditions is presented. This approach is based on least-squares boundary functionals which are equivalent to the H ?1=2 and H 1=2 norms on the trace spaces of lowest-order Raviart-Thomas elements for the ux and standard continuous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 41 شماره
صفحات -
تاریخ انتشار 2003